EOE-82: NON-LINEAR DYNAMIC SYSTEMS
|
L T P
|
3 1 0
|
UNIT-I
|
Dynamic systems:
|
Concept of dynamic systems, importance of
non-linearity, nonlinear dynamics of flows (in 1,
|
2, and 3 dimensions) and Maps (1 and 2 dimensions) in
phase space, Equilibrium,
|
Periodicity.
|
Picard’s theorem, Peano’s theorem, boundedness of
solutions, omega limit points of bounded
|
trajectories.
|
8
|
UNIT-II
|
STABILITY-I:
|
Stability via Lyapunov’s indirect method, converse
Lyapunov functions, sublevel sets of
|
Lyapunow functions, Lasalle’s invariance principle.
|
7
|
UNIT-III
|
Stability-II
|
Lyapunov’s direct method, converse Lyapunov’s
theorems, Brokett’s theorem, applications
|
to control system, stable manifold theorem, centre
manifold theorem, normal form theory and
|
applications to nonlinear systems.
|
8
|
UNIT-IV
|
Bifurcation:
|
Elementary Bifurcation theory, catastrophe, strange
attractor, fractals, fractal geometry and
|
fractal dimension.
|
8
|
UNIT-V
|
Chaos:
|
Deterministic Chaos, routes to chaos (period doubling,
quasiperiodicity, intermittency,
|
universality, renormalization); Measurement of Chaos
(Poincare section, Lyapunov index,
|
entropy);.control of chaos.
|
9
|
Reference Books:
|
1. D.K.
Arrowsmith and C.M. Place, “An Introduction
to Dynamical Systems” Cambridge
|
University press, London, 1990.
|
2. K.T.
Alligood, T.D. Sauer, and J.A Yorke, “CHAOS: An Introduction to Dynamical
|
System” Springer Verlag, 1997.
|
3. H.K.
Khalis, “Nonlinear Systems” Prentice Hall, 1996.
|
4. R. R.
Mohler, “Non linear systems, Vol-I: Dynamics and Control” Prentice Hall,
1991.
|
5. J.M. T.
Thomson and H.B. Stewart, “Nonlinear Dynamics and Chaos” John Wiley &
|
Sons, 1986.
|
No comments:
Post a Comment